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1 Introduction

One of the most pressing issue facing the current global community is climate change and
global warming, which has instigated discussion of concerns regarding current energy and fuel
resources and research into solutions to the environmental crisis. Cutting-edge technology have
enabled new discoveries and improvements on existing solutions to alleviate current environ-
mental challenges. Progress in the Nanomaterials Science and new advancements in Machine
Learning have expedited developments and improvements in innovative methods of capturing
greenhouse cases.

Recent research points to prioritizing the capture, storage, and use of methane emissions
as a potential solution to the fuel crisis. The removal of methane can lead to significant
improvements in overall air quality and decreases in global warming since it is the second most
abundant greenhouse gas and extremely potent in trapping heat (Jordan, 2021).

The combined risk factor associated with methane’s high flammability and lack of existing
research on methane capture and energy efficient conversions to fuel makes it challenging to
safely work with. However, it offers promising potential to be a source of energy that surpasses
other fossil fuels as a solution to the fuel crisis. Furthermore, significant removal of methane
can lead to drastic decreases in overall global temperatures and the issue of global warming
since methane is the direct contributor to an increase in the ozone layer (Jordan, 2021).

Zeolites, a class of crystalline, microporous inorganic solid consisting of silicon and oxygen
atoms, offer a safe and reliable solution to storing and transporting methane and other volatile
gases, such as carbon dioxide, without further emitting pollutants. They offer distinct advan-
tages over other catalysts such as (1) being an inexpensive material, (2) relatively low energy
and temperature required to capture gas, and (3) low risk and simple methadology. This study
will use 234 zeolites from International Zeolites Association (IZA) experimental structures and
331,163 from Predicted Crystallography Open Database (PCOD) hypothetical zeolites (B. Kim
et al., 2020a).

The research focuses on improving an existing algorithm for inorganic solids design of three
dimensional material grids of atomic-scale structures of zeolites, ZeoGAN. ZeoGAN, or zeolite
GAN, is an already existing generative adversarial network (GAN) model with the goal of
generating new potential zeolites and energy shapes using artificial neural networks. The
present research aims to improve this basic GAN model to allow users to develop zeolites with
specific physical properties, such as zeolites with low energies, which means higher binding
potentials to improve stable capture of methane particles.



This can be accomplished by integrating HydraGNN as a function in ZeoGAN. HydraGNN is a
pre-existing multi-tasking graph convolutional neural network model that predicts global and
atomic physical properties given atomic structures. However, one primary barrier preventing
an easy integration process is that HydraGNN requires input data to be in Cartesian format,
but the output of ZeoGAN is the energy shapes of a materials’ grid.

Thus, the algorithm developed will be incorporated into the generative adversarial network,
ZeoGAN, as a function for converting the crystal lattice data of the material grids into Carte-
sian coordinates for training of HydraGNN. Since the output of ZeoGAN is difficult to visualize,
the algorithm also provides the data required to plot the 3D molecular structures to assess and
confirms the accuracy of the material grids of the zeolite structures generated from ZeoGAN.



2 Literature Review

Global warming and climate change have become immediate concerns that have led to a
fuel crisis and a surge of research and development to solve these concerns through other
alternatives as well as new age technology. It is not only important to discover better methods
of capturing greenhouse gases, but also critical to uncover and develop new technologies to
create better alternatives for the fuel economy.

New development of methods in Machine Learning and Artificial Intelligence have made sig-
nificant impact in chemistry and physics, which have considerably progressed human under-
standing of the environmental challenges and potential ways to alleviate it.

One such development is zeolites, which offer an efficient and relatively inexpensive solution
for reducing methane emissions, which has been identified by various climate negotiations as
a major priority to quickly curbing global climate change (Chandler, 2022).

ZeoGAN is a newly-developed machine learning algorithm that generates these new zeolite
structures and energy spaces based on known zeolites for inorganic solids materials design. It
offers potential to solve many different energy and environmental related challenges.

2.1 Zeolite

Zeolites hold the promise of a solution to many of the environmental issues facing our world,
including but not limited to methane and carbon dioxide capture and storage. A team of
researchers at MIT discovered treating zeolite clays, an inexpensive material currently used
to make cat litter, with a small amount of copper makes it extremely effective at absorbing
methane gas, even at extremely low concentrations (Chandler, 2022).

Zeolites are crystalline solids structures made primarily of silicon (or aluminum) and oxygen
that form a structure with pores or cavaties and channels where water and/or small molecules
can be captured. One defining feature of zeolites is that their structures are made up of SiO4
(or A1O4) tetrahedra linked to each other through oxygen atoms to form its porous structure
(Chandler, 2022).

They can occur naturally as minerals, but most zeolite structures have been synthetically
made for commercial use or for scientific research. Currently, there are 191 unique zeolite
structures identified and over 40 naturally occuring zeolites known. Originally introduced as
an adsorbents for industrial separations and purification, zeolites are now used for a variety of



purposes, such as petrochemical cracking, water purification, separation and removal or gases
and solvents, agriculture, and construction (Chandler, 2022).

Zeolites’ porous molecular structure, relatively large surface area and ability to host copper
and iron make them promising catalysts for capturing methane and other gases (Jordan, 2019).
The current basic system for capturing methane and other gases is quite simple in concept.
The idea is to have a packed chamber of tiny particles of zeolite material infused with copper,
which is then heated from the outside as a stream of methane gas flows through the chamber.

In the research conducted at MIT, methane levels ranged from 2 parts per million up to 2
percent concentration to account for everythhing that might exist in the atmosphere (Chandler,
2022). The researchers found that peak effectiveness of the process was when the chamber, or
reaction tube, was heated to 300 degrees Celsius, which actually requires far less energy for
heating than other methane capture processes.

This process of using zeolites has several advantages over other existing approaches to capturing
and removing methane. (1) It is a much cheaper alternative to other more expensive catalysts
such as platinum. (2) It requires significantly lower temperatures and energy, whereas other
catalysts require at least 600 degrees Celsius. (3) Zeolites require a more simplistic methadol-
ogy for extracting methane. Current catalysts require complex cycling between methane and
oxygen streams, making them complicated and dangerous since methane and oxygen are highly
combustible on their own and together (Chandler, 2022).

2.2 ZeoGAN

Due to the complex topologies of zeolites, some might propose that these materials are es-
pecially challenging to generate using artificial neural networks (ANNs). Furthermore, other
factors such as “the nonunique representation of unit cells, complex chemistry, ambiguous
assignment of lattice parameters, and constraints of periodic boundary conditions” also add
to the challenges in incorporating Machine Learning and ANNs for crystalline materials gen-
eration, and generation of undiscovered zeolite structures.

Generative adversarial networks, or GANSs, offer a solution to these challenges through its
“enhanced capability in generating realistic objects such as human faces” (B. Kim et al., 2020a).
Using deep learning methods, such as convolutional neural networks. This modeling technique
is an unsupervised learning task that involves automatic detection and learning of regularities
or patterns in the input data to generate new examples that could plausibly come from the
original training data.

GANSs consist of both a discriminator and a generator, where the generator creates realistic
undiscovered objects based on the input data and the discriminator differentiates between the
real and fake images. The goal is for the discriminator to improve its differentiation, while the
generator progressively improves its newly generated objects to deceive the discriminator (B.



Kim et al., 2020a). This basic workflow facilitates adversarial learning where realistic objects
are generated with the improvement in the GAN’s learning process.

A team of researchers in Korea developed a new type of generative adversarial network (GAN)
named zeolite GAN, or ZeoGAN, built for the purpose of generating new potential zeolite
materials and energy shapes (B. Kim et al., 2020a). For faster generation of the training set,
the energy dimensions of ZeoGAN are set to be the methane potential energy and facile creation
of methane energy grids using classical molecular simulations (B. Kim et al., 2020a). Their
selection and this research study’s reason for selecting methane is described in Section 2.3.
Though this particular study also focused on methane, ZeoGAN, in practice, can easily be
modified for other gas molecules, such as carbon dioxide since only the selection of gas molecules
within the classical molecular simulations would need to be changed (B. Kim et al., 2020a)

Figure 2.1 offers some insight into the overall schematics of how ZeoGAn works. The input to
the generator is divided into the materials grid, which is further subdivided into silicon and
oxygen atom grids, and the energy grids constructed using classical molecular simulations (B.
Kim et al., 2020a). The size of all three of the grids is set to be 32x32x32 points in fractional
coordinates, where the three-dimensional lattice vectors are divided by 32 (B. Kim et al.,
2020a). Hence, the fractional coordinates were meant to maintain the same grid size for all
of the zeolite structures and the number of points were selected to maintain smaller memory
and storage costs for faster a learning process (B. Kim et al., 2020a). For each 32x32x32 grid
points, a methane molecule was simulated to calculate the interaction energies between it and
the silicon and oxygen atoms (B. Kim et al., 2020a).

The positions of the silicon and oxygen atoms are represented by normal Gaussian functions
with the same amplitude of 1.0 and variance of 0.5, where the peak of the functions correspond
to the positions of atoms (B. Kim et al., 2020a). The entirety of the grids, including silicon,
oxygen, and methane potential, are combined into one tensor that is used as an input for
ZeoGAN (B. Kim et al., 2020a). Then, ZeoGAN trains itself to generate realistic tensors that
resembles tensors calculated from the input, real zeolites. This research, and the present study,
will use 234 zeolites from International Zeolites Association (IZA) experimental structures and
331,163 from Predicted Crystallography Open Database (PCOD) hypothetical zeolites to train
the neural netowrks in ZeoGAN (B. Kim et al., 2020a).

2.3 Why Methane?

Methane is one of the most prioritized greenhouse gases. It is the second most abundant green-
house gas after carbon dioxide. Concentrations of methane emissions have grown more than
twice as fast as carbon dioxide due to human-related activities since the Industrial Revolution
and is 81 times more potent at trapping heat in its first 20 years of release (Jordan, 2021).

Primary sources of methane emissions are from agriculture, waste disposal, and fossil fuel
extraction. However, there are also natural sources of methane that account for 40% of global
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methane emissions. Focusing efforts on significantly reducing methane emissions would greatly
slow the impact of global warming.

Removal of methane will lead to a decrease in air pollution and thus, improvements in air
quality. Since the oxidation of methane is the primary contributor to the formation of the
ozone layer in the troposphere (Jordan, 2021).

Methane also has the highest potential to solve our current fuel crisis. In comparison to other
hydrocarbons, it is more environmentally friendly. In comparison to carbon dioxide, methane
produces more heat and light energy per mass, while emitting significantly lower pollutants.

The recent discovery of methane clathrates, or more colloquially known as “fire ice”, are
sources of high energy-intensive fuel found as an ice crystal (Yoon, 2017). Methane clathrates
are formed through a combination of low temperatures and high pressure and contain locked
reserves of natural methane gas. One cubic meter of the compound releases about 160 cubic
meters of gas (S.-Y. Lee & Holder, 2001). These enormous deposits of methane can be found
distributed throughout permafrost regions and soil microbes in wetlands with more energy
stored in methane hydrates compared to the world’s oil, coal, and gas combined (Yoon, 2017).
Recent efforts to convert this methane gas to energy has proven to be fruitful. Thus, despite
environmental and global warming concerns, plans have been made to make methane a leading
source of alternative energy in the future over other fossil fuel sources (Yoon, 2017).

Despite its high potential to slow global climate change and offer a solution to the fuel crisis,
there has been a lack of development of technology for methane removal due to challenges
related to its concentration and dilution being extremely low (Lackner, 2020). A known way
to use methane is to convert it to methanol, a liquid form of fuel that burns more cleanly
with fewer emissions. However, this conversion process requires significant heat and pres-
sure, which generates a significant amount of carbon dioxide emissions. In addition, storage,
transportation, and utilization of methane presents its own set of problems.

Methane is highly flammable and has a high risk of combustion - making it a difficult green-
house gas to safely manipulate (Yoon, 2017). Improper handling of methane poses the danger
of exacerbating current global warming issues. The current trajectory of global warming is
causing the melting of permafrost regions with methane clathrates and hydrates, which could
result in the release of trillions of cubic meters of methane into the atmosphere (Yoon, 2017).
This risk and the current lack of existing research and resources to capture methane in a
reliable and energy efficient manner makes it difficult and dangerous to handle.

New technology and research has discovered a class of crystalline, porous material capable
of safely and stably soaking up, capturing, and storing methane gas called zeolites (Jordan,
2021).
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