Blanchard, A. E., Shekar, M. C., Gao, S., Gounley, J., Lyngaas, I., Glaser, J., & Bhowmik, D. (2022). Automating
Genetic Algorithm Mutations for
Molecules Using a
Masked Language Model.
IEEE Transactions on Evolutionary Computation,
26(4), 793–799.
https://doi.org/10.1109/TEVC.2022.3144045
Chandler, D. L. (2022). A dirt-cheap solution? Common clay materials may help curb methane emissions. 1.
Fuhr, A. S., & Sumpter, B. G. (2022). Deep
Generative Models for
Materials Discovery and
Machine Learning-
Accelerated Innovation.
Frontiers in Materials,
9, 865270.
https://doi.org/10.3389/fmats.2022.865270
Jordan, R. (2019). Stanford researchers outline vision for profitable climate change solution. 1.
Jordan, R. (2021). Removing methane from the atmosphere. 1.
Kim, B., Lee, S., & Kim, J. (2020a). Inverse design of porous materials using artificial neural networks.
Science Advances,
6(1), eaax9324.
https://doi.org/10.1126/sciadv.aax9324
Kim, B., Lee, S., & Kim, J. (2020b). Supplementary
Material -
Inverse design of porous materials using artificial neural networks.
Science Advances,
6(1), eaax9324.
https://doi.org/10.1126/sciadv.aax9324
Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A., & Jung, Y. (2020). Generative
Adversarial Networks for
Crystal Structure Prediction.
ACS Central Science,
6(8), 1412–1420.
https://doi.org/10.1021/acscentsci.0c00426
Lackner, K. S. (2020). Practical constraints on atmospheric methane removal.
Nature Sustainability,
3(5), 357–357.
https://doi.org/10.1038/s41893-020-0496-7
Lee, S., Kim, B., & Kim, J. (n.d.). Supplementary Information. 30.
Lee, S., Kim, B., & Kim, J. (2019). Predicting performance limits of methane gas storage in zeolites with an artificial neural network.
Journal of Materials Chemistry A,
7(6), 2709–2716.
https://doi.org/10.1039/C8TA12208C
Lee, S.-Y., & Holder, G. D. (2001). Methane hydrates potential as a future energy source.
Fuel Processing Technology,
71(1-3), 181–186.
https://doi.org/10.1016/S0378-3820(01)00145-X
Lupo Pasini, M., Zhang, P., Temple Reeve, S., & Youl Choi, J. (2022). Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems
\(^{\textrm{*}}\).
Machine Learning: Science and Technology,
3(2), 025007.
https://doi.org/10.1088/2632-2153/ac6a51
Schriider, K.-P., Sauer, J., Leslie, M., Catlow, C. R. A., & Thomas, J. M. (1992). Bridging hydroxyl groups in zeolitic catalysts: A computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites). CHEMICAL PHYSICS LETTERS, 188(3), 6.
Yoon, J. (2017). The Benefits and Downsides of Methane. 1.